
17.1 Vector Field .

FC a.b) = ( fca . b)
, 919 -b) >

a-

✗- component g-component
of thevector of the vector

of the point(a.b) of the point (a.b)
.

at the point cab? we draw vector a. b)
. gla.si

.

es . ;←*a : I b ? I

g- ca.SI : Za g ( a.b) =2b.

f-[ 1.17=2 9-4-7^-2 f- ( i. D= 22.27.



* A lot of what we will learn in chapter 17 is used in different

physics I onginearing classes .
Cohn is generalization of those closes)

/

t
'

it A

wind flow in 3D strength of airflow magnate field .

of the
tteuind indicted by the length

horrieane
of the arrow .

around the

eye of the

hurricane



ex ) .
7=62×-297 . * Plug in a coordinate in 1122 and

get a vee back .

FC I. D= 42 - l
,
2- I> = 22,27

f- (o . D= ( I.0,2
. I > = <92?

g- e-1. D=
< 2 . -1, 2- I>=L -2.27

g- ( i. 03 =L
2.1;

2- °> =L?-

°>

f. µ,
-1) = <z. -1, z. -17 =L

- É
;
-2>

=/ C-1.D= ( 2 . -1, 2.0
> = C-2,07

once you plot^

enough number of
f

g
<0.27

>
<2,27

vectors on IÑ .

you get
this graph:

←
2-2,07

but if you draw
the actual vector

,
<-2 .

-27

Dona forget
that T-cx.DK/tx.D.9cx-YD the graph gets

is a vector
value function . cluttered

.

So depending
inputs real number

ix.ylinlki Output :Vector on the vector field ,
cfcx.yl.SK/.bD we scalethe vector:&

[domain) in 1122
Grange )

.



17.2 → line integral . integrate over in 1122 & vector field in /R
'

Cand 1123 aswell)]☒am2

17.3+17.4 → Sepecial case of
line integral on a vector field .

17.6 → surface integral integrate over a
surface in 1123 directorfield 1123

in

17.7 , 17.8-a Special
case of surface

-integral on a vector field .



17.2 Line integrals .

• There are many ways
to get parametric equation

of different curves
.

For straight lines,we
can use

<× > y> = <Xo, Yo> +
tcx,

-Xo
, y ,

- yo> ⇐ c- ⇐ 1
.

Xo- firstpoint
✗,
- last point

<× , y , 2-7 = <Xo, Yo,
-2
,
> + t< × , -Xo, Y,

-Yo, Z ,
-Zo> 0-4<-1

.

For lines in IR? you can also use the equation
-the line too .

ex) y
--2×+5 it, 3) to 13-11 ) .

✗=L , y --2-1+5 -11-1<-3 .

✗= -1+2 , y = 21-42
) -15 -let-12<-3. -3€

4- I

• For circle of radius V , center
Carb? * counterclockwise

orientation .

✗= atrcost, y> b+rsTnt
costs 2T

works but there are many other
variation of-51

.



• For general curve f-HAY ,
let ×=t . and y=ft) . if a#Eb

then a stab

C.orientation from left toright) .

ex ) - y=c×+z5+3 from C-4.7) to
c-1.4)

.

let ✗=L
Then y =t+z5t3

-4€ E- 1 .

✗ =-1-2 then Y= It-2+25+3 -⇐ ✗ E- 1
.

I
= -5+3

. -4*-2<-4
-2£ t a- 1

ex) .
✗=y
"

-3 from C -Z
,
D to L-3.07

let y=t then ☒= -12-3 , I EY SO → I# £0 .

D- with this method,
the positive orientation is from left to right

or from below to above .

with fctds , positive orientation
of the curve does not matter

but f. f.ñds ( line Integral on vector field
it matters

.



• For curie with orientation from right to left . and a# es
✗=L, ya ft) ← oriented from left to right .

5=1 f- a s=o f- b.
let tcs= Cts) btsa

and let ✗= d-5) b. + sa . Y = f- (i-D) ,
0--5<-1

.

replace truth
this term

.

is the parametric eq . of the same curve with orientation

from right to left .

ex ) . f-1×7=5+3 from (-3,12) to ( 5,28
)
.

let Xt=t, yet)= -5+3 ,
→ = -1<-5

When -1=-3
, ✗=-3 , y= c-35+3=12

(-3-12)

when E-5 , 4=5 , y=⑤T- 3=28 (5.2ft

t.es?=Li-s)l5)-sl37=5-5s-3s--5-8S.X--5-Ss.y=fL5-8s7--C's -8572+3
.

0--5<-1

when 5-0 , ✗= 5-801=5
,

9=(5-8-0)?-13=28 (5,28)

when 5-1
,

✗= 5-8111=-3
,
9=(5-8.1)--13--12 (-3-2)



Integrating on a curve C is not too

different from integrating fix with respect to✗

with Sabtlxdx, you are into ratty on astraight

line an ✗ axis from a -105 .

fabftxdx is same as integrating
on this real curve .

Nov
,
we integrate tix .D on C, where Cis

acurve

in 1123 . If tex .9720 . Set ds gives area of

a curtain like figure ( rounded by Cad

project'%tc on the surface offcx.is ) .



Q . Why is there a change of variable ?

An . if a parametric . equation of curve
C is given respect to

its lenghth ie .

r (5)= < ✗ (5) , yes
]>

.

Oes Ea . where a is

the Length otc . then rc b) = <✗ (b.) . Ylb
>> = CX is . Yb>

end
you get coordinate which corresponds to theleagth.b.mg#o;u+hatcaselrYe71=Iandffds=foatcxls3YlsDds.

Start
length of this
part isb.

However,
-it is difficult to parametrize a curve

with
respect ⇒ its

length , By multiplying It't) I , we
are changing thevariable from

Sto t .

Think of it as U- sub . Thus, Stds -_Scfcxt),yHD/ r't)/ dt



e.×) . fczxdsj c. rct)=<t , -141>
04<-2.

refuge Florey
1. Already done!

2.r
't)= 4,2-17 .

It 't) / =ftp.#-.3.flXlt).YCt))--2tI-0
,

9=1+4 - 0=1 .

-1=2
.

U= 11-4125=17 .

4=1-14-17. du -- ftdt → ¥ du
-
- Itdt

.

sotds-fiz-F-4-dt-j.EE,du=£, }u"l ,
"

.



e.g) . 545-5505 .

C : part of line y
--2×-3 from (-1.5+1013.3)

.

1- Ht) = Ct, 2-1-3>

I g-
-

- ' Ete }
.

2. r 't) = < 1 . 2 >
.

I r't 1=-12+5--55 .

3. text) . YH)) = 4-12 -5 (2+-3)
? =4-1--5 (41-2-121-+9)

= 4-1--20-1
-

+Got -45

= -165+60+-45 .

Sefds = f) (-165+60-1-45) of -dt .

= f- (
-

'f- tis -1300-45-4 / I

= f- [
-

'§ 3>+30-(35-45137) - (-1-154)>+301-15-451-17]

a riff - 144+2-10-135) - (-1,1+30+45)]

=jFt9→5++



If f-IX. y -7) is a surface in IRS and C is a curve in 112
>
-

Set ds is computed using the same method as IF version .

e. g.) fcxytds where Ht) = <Sint, cost, 17 ,
et ETI

T T 7-
.

1. Done !

z
,

r't) = (cost, -5in-1,07 . I r't) / =nÉÉo=FÉÑ
= I .

3. fcxltl.gl?2-ct1)-- sine
- cost . I

Sctds: f¥ sint cost . I - I dt let U ⇒int da -_ arsed
-1
.

t=T ,
4=0.

e- ¥ .

a- I
= S ? udu
=
- sjudu= -Evil I = - £11T= - I .



F- : vector field ( vector valued function)

T→ : " unit
" tangent vector at

each point of c

consistent with the orientation

In fit -Ias , we
add clot product of

É and'T at each point on
C
.

We can add them since É•T→ is a real number

unlike f.fds . orientation ofthecurvematers!

So - Ids - line integral of a vector field

= stay) , g IX. g)7 ( a vector field
inIÑ)

fatal >
- scalar line integral
tix . y ) ( afwhetbn In IRT



Basic Idea :

① Replace ×. y , -2 in
F- = <fish> with

✗ED, yet, 2-Ct turf?

② computer 't)

③ compute # • r 't)

I. r't
=f✗

'

-1g y 't hz
'

or = fdxtgdythdz.
•

derivative otx
.

in physics, WIÉS is a very simple example of

is a constant forcefield ( meaning IT is same
atall points)

s is a distance in a straight line .



e.g.) SEI - Ids É = 4×-9 , × > . C : line segment from (-1.4+010.5)

① c, y -5 = & (X- 1) - let a- 0 .

y : 3×+5
→
Ht) = Ct, 3-1+5?

I T
component component

② V't = < L, 3,7
✗it) y't)

DX dy

⑤ É = ( t- (3++5), t > = at-5 ,
I >

T J

④ F -F = É -

r
'

G) = <ft), get >
- <✗

'

1+7
,
y
'

II>7

= f- ✗
'(t) -1g y't) = fdxtgdy

= (-2-1-5) (1) +31+7=-2+-5-13
t =T-5

⑤f.É . Ids = Sit-sort = I ti - 5+17=(5-02-5-0)- (Eti-sap
= o - (I +5) = - I

.



To compute circulation, you simply compute line integral on veceortietd
.

But a circulation of É on
C only applies to a closed

-_
carve .

ex) - compute circulation on C-. rCt=<sink) , cost
)> 0€ £21T

✗ b

of the vector field f- = <×.
-y>

f g

Sfdx tgdy
U= Sint du

-
-costdt.

= g)
"
< sint, -cost >

- C cost . -Sint> at

t=2T , u
'
- sin25=0

= f?
"

sint cost + Sint
hit dt

+ = 0
,

u= sin 0=0
.

= S?
"

Zsintcost at = £2M du 10



unlike circulation.to flux of the
vector field .

across C applies to

both closed & not closed curves

actually both C-yix
'

>as :-X
'> are

orthogonal to unit tangent
vector .

However, when we fix
the vector

K Which is orthogonal to both
T

andTr .- to be 20.0.1> instead
of

co . 0 . -17. We
choose <y

'
,
-1×1 >

to be used in the definition

of flux
.

ex) . Compute flux on C- resin-1,1051)
✗ y

⇐+ c- 21T of the vector field

F- = ⇐ .

-y>

za
t ¥

So tdy-gdx-fjosi.n-fsin-D-c-cos-Dkos-Ddti.SIIs in't + cos-4 at
-
- fi

"

costa Isin-451=0 .



CO

Y÷¥÷÷ -

- § : vector Field .
Creator valmd tunein

I
'

:
"

unit
"

tangent . vector
at eachPoirot .

1%1=1
. consistent with

the orientation
.

- Sit -II. "dot product
"

of ÉadÉ .
at each point on C.

F- É : IÉIIÉI cos 0=15-1 cost .
unlike fctds

,oiotcwrevemates .

F- = Cfcx, y )
, g CX.#

'

.
( a veetorfidd : - IR?

If ds - Scalar Kim interpret flay) Lafond ink).



- Basic idea :

fÉId÷=fEy¥¥.it#dt-- opeplacex.y.it
b

in F-If , g. h?Haidt
=ggÉÑ'Hdt with ✗at)

. YH) .

2-G)
I

int't)
.{ ② g.⇒ •mµ. .- - - -

③ É • Ñ 't)
.

=Cf , 9. h>-2×4+3,44-11,2'tD

= f- ✗
'
+ gy

' -142-1 .

✗y⇒=dt=d✗ .
y'H7dt=dbÉHdt=dZ

a b.
= fdx +gdy that

-

W=É . s TI is a constant forcefield .
in physics . 54*0×98 is a distance in a straight-line .



e-9) . J
,

É . Id S
. E = (✗ -y , ✗ 7 C : line segment from

C-1, 2) to [0.5 ).

① . y=m× -15 .

m=
= ¥ ⇒ .

/
% >*" :÷,2- m C-1)+5 .

✗=t

g--3-1
② i't:< 1,37 .

× I .

-1 c-✗£0 .

tEtE@
③ Ii =L -1-(3%-1.5), -17 =L -2-1=-15, t?

T -9--2+-5-13T =

④ É . Ñ =L-2-t- F.t> • < 1,37 =
Lfc-17. get

-(✗
'

FD.gl#?--fc-Dx'lt1-gG1y't )

⑤ f.ÉI ds-jab-i.id-t-sit-s-dt-tzti-s-eli-i-G-5-s-t.it
=-*+5k¥



C : closed . To compute circulation , you simply complete
line integral .

T
over vectortied. But only applies to adosdacawetis •=

e.g.) compute
circulation on C : Ñ = <cost , 5in -17 , o ⇐+ £2T,

✗ 4.

of the
vector field I =C✗iY?= <cost, -sina.fi/nD=C-sh-sws-D

21T f. 9

STÉf
at

.

a- Sint da
-

-Costdt

= So
"

- Sint cost - sintcostdt-JF-2sintcostdt-f-ztldu.tt/---sin41o4-o



←

it
"

,
←

-

ii.
% . . ¥
f b +

.

iialaei 0 .

Flux
.

1- 0 .



it :<✗

My
a
01-
cyi <-y#→

I :T 't) = ( X ' , Y
'

?¥ify!-
F
←

> e
ex) cowplut flux on C. ftp.scost.sht?

n

o e-ÉT

g.
F- Ñ×, -9 ? y'=< cost

,
sine?F J

.

y
'

ffTi.nds-fFfcost-sint7.ccost.sint7@dt.Z-a-SYos-T-s_n-l.d-1=6 coszt-d-t-E.in#
"

-0
.





É☒→I -

=[f, g>.< ×', y ' >dt . IF-

.

F-Ñ>0 ÉÑ:-O
.

¥É÷ E-""¥-1. ¥É f. s> < y :-X
'

>at .

Ea is ✗↳ I

+ - + 0
.













A and B are coordinates

of the first & last pts of

the curve c.

For line integral,we

get Fund . -1hm it

and only if when

É is conservative .

Thin 17.5 is an another way to determine whether or not F is conservative
vector field .

It means it SCÉ ' dr is same for ¥ types of

curves ,
then É is conservative .

But this is not possible to test

as you can't check for all curves .
: I



ex ) . fcÉdr
,
¥ = <zxy - 2-3×2+22, zy -2×2-7

C : rct) =L-141,541 , -1+5> ,

-3€ a-0
.

since É is conservative
, by FTL .

SET -dr = 41 B) - pl A) where 4
is a potential function and

B. A the last & first plot
the curvec.

44.4 . 7) = ZYZ - ✗ 2-2-1×3-1C .

first pt : H
-3) = 40, e-41,07 → Cio , e-3-11.0)

Last pt: V0) = < 1 . 2. 3) → ( 1.2.37

So . fc-I.dk 411,2 .3) - Cf ( 10, ,e-3+1,0 )

= ( 2 -23 - 1. 5+1 ? 2+c)- (
2Ce-3+1) . o - lo. 02-1

15K¥ 1)+c)

-112-9-12+4 - [ (026-3+1) +c)

= 5-cote-4,
* see how G are cancelled? You can drop c.from 4 when computinglineintegral,¥¥

.







fit .dr , É=(éeosy .
-ésiny > .

C is a triangular path from ( o.o)

to C-3.5) to C- 3,
-3) to (2-0)

.

It is conservative so

fcÉ -driftB) -Cf (A) 4=242--112-2-1✗Ty -1C .

last pt (0.03
and first ptlo.co

* Remember that
= Cf (0.0)

- 410.0 )

FTL only works when

= O

F is conservative !





When É is conservative

and C is closed,

So É .dr = 0

"conservative
"
vector

field is a property
that will show up

on Ch 17 a lot

make sure you get

use to it :)



17.4 Green's Theorem .

- --

am .

the circulation → curl throughout
the region R .

*.⇒☐
AR :C . 2¥

,

• simple closed/•oriented



§t.dv-ffgx-fydA.ciD
-

217-Curl .

•¥ ⇒ counterclockwise. •

0• g× - fgeo ⇒ clockwise . O
- Gy - fy=o

⇒ No rotation .

• T-i-cf.97.ES conservative.
⇒ fy=9×⇒#curl-9×-5-5-0 .

⇒|£F-dr=⇒ •Inf needed : §Fdr=-☒dy
c ⇒cc . &→ clockwise .



e-×) . F =L -2×9 , ✗7 . R : bounded by of Y
-
- ✗G- ←parabola

f- -9 9=0 .

•§if = If g✗-fydA "

y¥☒
"→⇒

c-A.FR
Green 's Thn :

= $ JI - Ey tzxy
)dA¥É→
of

R

= ffzxtzx) dA=f§4XdA .

Riz ✗(2-11)

= J f 4✗ dydx.
•

= §j°a×y×i↳dx =fi4✗kH-✗Dd✗
= Sisi-4×3 dx= EX - -44×45=8-1-16



e-×) . F=< -2×9 , ✗27. R : bounded by a :{ Y=XG-✗
> ←parabola

f- -9 9=0 .

g-✗ (2-11)=0go.E.di.SE?dv+E.-t--dr.--
"

¥µ,Cl

" """"""

&
""
"""

8Gt :(to> o :-( Ez . ✗= -t .
-251<-0
→

y
-

- ✗ (2--4--112+-1)=-2-1-t! -⇐+ sor 't) =L 1. 0?

F- (Ect) ) =L-2×9 . X'
7-↳ vet)=Et, -21-+7

I. v't) :<D.t
'>.<1.07=0 . r 't) =L-1 , -2-2-1?

ÉCF = (-2×1×2)=2-2ft)
(-2-1--1%-5)

Saf -r't)=f%dt=° .
= z-z-yi-2-i.tl)

°

É - r't) = c-4-42-13, -127-2-1,
-2-2-1?

= 41-2+2/-1>-2-12-2*5 .

c
=L -1" I;Fidt=fÉzEdt=ÉYÉ¥ .



e. ×? F-
'

= 2×+9,2×2> C : is triangular . from
F J

.

yo .
→ (1%0) → (5.57-910.0).

(5¥)
.

§É - di -- ffgx - fy DA
et . f÷#¥¥i÷green's-1%114×-1 DA

R
.

→

=

✗

4×-1
.
dydx

0 0

=/ fancy - y / fax
|

=§4Ñ- ✗ DX
= 4-3×3 - -2×2 /É=4 .

.



•☐☒ *

§F- dr - = ffzg-x-f.is DA . = {{ IDA . =µotRégñ]c. R
-

2D - curl |g×-fj
F-. <f. g> = LIX? ⇒ 9×-55-1-0=1 .

⇒ § Fdr = §fµgdy
C c

-

F : Cf. g)= GY . 0 >⇒ 9×-4=0
- c-D= I⇒§FdX=§fdx -91yd = §a&

= -§e9d✗ = f§idA .
-
-Am .

f :<f.g>=L ⇒9×-4=-21 - t =/⇒ §Idv=§ fdxtgdy-go-tydx-i.edu
= I §
,

XD5- ydx .



e.×) . ¥ yet :<cost, Sint
>

. &
=§✗dY=

- §bd✗
I

✗= cost . dx=
- sintdt

.

Anaotp = -21 § (✗ dy - Yd×)
c -

y
-

- sire dy= costdt .

C
2T

oft £2T

=
.If cost - contd-1 .-sint.C-sin-bdt.co⇐ iii. pse :#+7-1--1 . ¥É
= { §

"
cost -15m¥ dt rt):< coast, 45in

-0

F- 6 cost yz 45Mt
okay

ab-1T

= 4-64& re"tR=±§✗dY→d✗|== tz §
"

Idt "
d✗= -bsintdt-tzfbcos-4costdto-4sinttbs.ir)dy AY- ttcostdt .

= ¥21T = =§[
"

zicosttsinzt] dt

Ct. = ; sF"z4dt = £24.21T
-_2④



continue 1¥ Green 's Thin . 7--4<97.

2D- divergence _ =f×+9y .

-

→ div -- fxtsy> 0

→ net divergence .flux ←

" "

throughout

-

"" ¥:*.

across

the boundary 110 the region R .-

• f-✗+9g > 0 outwardflux

• f-✗ + Jycoinwardfln
•y=o ⇒source free

divergence measure ↳ expansion
contraction of ele vector field .



ex) F = City, o ) . R= SCX , y) i ✗Yy
's 1)

¥s§F = fftxtgydlt .

c -0 .

h→ =
( y
'

,
- ✗

'

7. =L
cost
,
Sinti c

Ñ=G)= ( C , 51¥ ,

o ETE -29?
Ñ't) = < -Sint , cost >.

✗
'
=
-sin-1

,
y
'
= cost

.

ÉLTC-47=4 cost + Sait ,
o> =

4.07
27 f 9

.

§
,

E. ñds = § fdy -9d✗= f. 1.costdt-otsk.tl#=cgYcustdt=sTntf?
"

=
0-0=0

.



ex) 7=2×4470 ) . R=fc×,y) .- ✗45<-17

fftx-gyd-TAJDA-rdrdo.R-kr.O-j.o-V-1.O-O-c.IT)
R .

= zxkdrd.co?fxt9y--2Xto=2X.-#go o
✗=rcosQ .

%
"

#costvdrdo-f.E.se/dzr-dfdo
IT

= #oso-G.is/d/d0 in

= fjÉosO - 3- do = } SHO / 0--0.0--0 .



e-×).
_f= Ey .

✗ 7
.

R :{ (V . -0) . If V13 , 0=0 Ezt )
.

a-tmp-e-heia-on-heboundy-R.gg
b. Compute the

cross the boundary otR.
0

§FdV= § F- dirt / F. dr.
C

reais "Éaen 'sµ §g× - fydlttffgxfg DA
Ri Ru

= If .dA .

- - zaki
¥iµ8

fy=IytD=¥¥= 1
.

2"
3

9×-4=1- C- 1)=L . fSzdA =L )? rdrdo =L
"

if ?doEÑ!



F = C- b.×
]

Green's Thin I -9
.

§F - nds =ff¥t¥ydA
C R

✗
By similar argument .

+ • the circulation.

§Éoñds=fff×tgydA=ffo+odAI
C 27312 dive) :O .

0 @drdo)
it-

± 0 ← net flux is

zero across c.



-
=
-

" '
"
'

-

☐
→

- oh

-

Sx- fy> 0 - &

I ☐
9×-59<00

-

-

→ 2D -dw

→

-

-
☐

-1×-19, >o f→.

f-✗ +9g -0¥
-



17.5 . Divergence and curl .

Recall 217-div . off .
din (F) = f×

+ SY
.
← scalar rained

F- = Cf , 9? function.

-

o

☐
←

D
Del operator .

☐ = ⇐ IT
,
¥7

.

• F = ⇐ Ty ,÷> - Lt . g. h> = diff).
I 0

dot produce .
= Itt -1¥ 9 +¥ h

= f-✗ + gythz
.

F-4. y.io?divT-t-f-f-Yy-3I--tHl=3i@pos9-iw-vector field expands outvedeverywhere



F.=L-Y . ✗-2, 97 .

air th = II +21¥ + 3¥

= 0 + 0+0

= 0

source free
and

neither expanding
or contract-1J .



17.5 continua

eh . F:(zxy -12-3×3 4×2-7
.

• Find dirt

• state whether the vectorfield
4. F. in>

T-issouvceft.ee#divCT-)--J---Y-y-J$-zhf=zxy-iz-
⇒ 5-✗ = %É= 29

.

ydwtÉ
) : 24+0+8×7
0
.

as :X
'

⇒ 9y= 3¥ = 0
.

⇒ Fis not
h=4✗É =) hi. dI¥=8xz . Source free .



ex? Find thedivergence of
the radial vector field .

F- ¥;;¥ = ÷④.

-
- 4. g. h > F- <×. 9.

Z ?

irl=FÉ.

↳ length
dive)=¥+%y +¥

. (wc⇒=µ✓ •+ r

f- = §¥→y, ⇒ fxi-t-Y-xx-y-z.z.ci-yi-zy4.rs.

=✗¥¥;÷¥-=¥¥;÷÷.
g=*¥+⇒~⇒9y=×Y¥j¥zÉ

.

a- ¥+¥y⇒n±=×¥¥¥¥'-
divttt-tx-isu.int : →×¥¥i÷±EÉ¥+¥¥É¥ii= -1¥



⇐

E.FI?-ym--iridir-t)--3-&p.--0-T-



2D - cut =/ eggs

5measure the

rotation of the vector T-g.gg#pfield or each pts .

curl# = 7 ✗ I =/ ¥ % %)
+ s n

t
=/ ÷ ¥ / I -1¥ ¥ / it /

⇐ ÷ / ig h f h
f 9

= (hy - 9£ )T - thx - fuz)Jt☐g-fyÑ .

=L hy -92 , fz - fix , 9×47 .



④ F- = e-y , ✗- 2- , +y >

<F
.

J
.
Ten >

car IF = ☐ ✗ F = ☐ ✗ C- %X-Z , Y?
-
-

j ñ

=\ :* ↳ ¥
-y ✗-z y

=\ :-,
÷ /I -1¥

%- fit /E. ¥:/ñ: -
✗-2. Y -y y

= 1- c-e)I -10+015+4 - 1-D) É

= 22 , % B) -1-5--10<0.0?
→ sink

'

gives the
rotate off in Xy-plane .



e✗)F=cx . g.
t) ← Tad :D Vector field . ( cnrlÉ=D

.

Curt = ☐ ✗ F = ☐✗ G. 9.
t)

i s k

=/ ¥ By ¥ / =
✗ 4 2-

=/
÷ ¥1 :-/⇐

¥ i' + 1¥81
Y ✗ 2- / ✗ y

= (0-0) I - (o -o) J + (o- o)É

= ( 0 ,

0
.

0 ]

II. ⇒ F- Is irrational .



Thm : curl of conservative vector field
.

Curl LÉ ) -50 .
if-I=④

⇐
"

if É is conservative ⇒ 7- is

irrotational.pro#:T---T4=CY..4y.4z-7
.

Curt : ☐ * 7- =?= /
i K

Ix % %-)
1 Tx Yy 4£

4%-37 /I -1¥ ¥1T -1/+1%1&y Yz Bx 47 % Yy
4ha>→
continues = Cfzy - %-) - 142×-4×2 )Jt (pyx - 9×y)É
2nd partial -

-

derivative . = OI + o J + Oti = (0-0.0) = Ñ .



What is 0 . (☐ ✗ F) := div ( curl F) . ?

[divergence
of a curl of

a
vector field )

.

Thm of Divergence of curl - dir caff) = o

proof : f. = Cf , g , h 7. cnrlCdi@t.t↳
scalar .|noedetin

The ☐ ✗F-- cent F- (hy-9zfz-hx.9x-f.gg
.

Now 0 . (0×7) = diwcanl F)
.

= div-hy-9z.tt - hx, 9×-1-9 . )
=#-9--7×1*-1- try 1+19×2. -tyt) .+ assume t.9.hr. ↳ ~ =

continues partial. =
0 Constant

,
not a vector?⇒ order of partied

does notmatter



⇒ I:-< ✗F.I bit ?

✗ same direction as.fi .

✗cult
/= 10×71÷ñ×i ⇐ ais ai§É÷"
,

= 253 .

' " ' 1=15.4:#

+ '"
VEI"

is.a.tl#
i i k

✗ " t

= fz-yj-i-lz-XI-fy.tw =L-2--4×-3×+1?

Curt :|
: : a

÷ ¥ ¥ / =/ Ty % / I -1¥ &. it /
⇐ % / ñ

'

1-z-yx-zx-yx-zxty-z.ly *y /
"

→-y ✗-z

= (1-1-1) )T - G-e-1) IT + (1- c-D) Ii = (2-2.2)=221,-1.17

= 2 É . our LÉ 11 a-
'

→ / curlÉl=2lñl .





17.6 . Surface integral .
•Parameterized surfaces

-

o
- 01T€

②
- ☐ o.FI
- ⑤☐

④ ☐
-

Recall : A curve 1kt is defined parametertally It) :<✗it), yet?
act a-b.

For a surface in IRS ,

we'll need two parameters
.
and 3 dependent

variables : →y(u , if ) = ( ✗CU, b) , bla, v7 , 2- LU

#if- {Av) . * usb.⇐ Vsd 5u→
y



parameterized Surface
.

height
h > 0 .

"

axis along Z-axis) .

④
✗ = acos :O

""

""*⇒Parametric Description : y=

asin.0-z-Z.nu#.=asU.TsUir--0.v--Z .

& p

o d- U 2- 21T 0 €Y,
eh

"

0
yv

2-

h

✗= a cosh

D= asian

R://U.tl) : Otra c-25 OEV e- vh ) 2- = V.



② con⇐ •
radius

a > ° . ( axis is £-0k
" ? µ=×Iy⑤ z=h .

oe-E-hx-tyf.li
• height h> 0.

• ( vertex at
or:S 'm) . ⇒ a=L

.

= ¥-1
.

/É=%] ⇒ .

or E- ¥
.

{
Kroos

0 = ¥%s④
•

y=rsinQ .
= ¥051

2- =④ F

w. D- .

V: £ '

^ rcu.Dwww.ggywu.yg.my#q.?..u.....,o&-UE2a
0 ± V. ← h

. # a
6-



0

, sphere . radius
a> °.

⇐a.su:i÷I¥?
(centered at origin

.

+
✓

parametric description
.

✗=rcos⑤ .

ycu.vj-2asinucosYAI.us#-acosh-7y=ys-invO-. .my

0 EU ECT o c- V. c- 21T
V'- D- .

O s
£21T

.

o ⇐ us l
EXIT:

FEET



✗

④ paraboloid .

r.CU.ir?=2vcusU.vsinu.vjBg@
←

+

,

"
-

o E U
c- 27 0 I V.% oh ,

✗ =r cos Q

% y = rain Q .¥:" 2- = ✗Yy
'

= V2 .

f-- u . * = V.



⑤ Z=#7.←Explicitly defined surface .

R:{ IX. y ) . at
Eb
,

⇐Y ← d.)

y

1¥.
Ext HD

Vcu .v) = ( u . V
,gcu.in?a=u.-s--.# I

.

¥÷.



o, hemisphere a- = 16
.

a. ✗4942-2=16.0 for Zeo .

How to write rcu.is
?

zu
.

Muir) .=( a.sinucosvasinusin!
acosu?

4.÷÷÷;*•
¥ EU c- IT

.

rcu .
V) = (4 stun

cue V
,
#sina.cosv, acosu?IcusToeVc&.



②*I. The cylinder if't 2-
'

= 36
, ,

o c- ✗ a- 9
.

radius a? 36 .

a-- 6
.

height h= 9 . →
axis along X-a / 6 .

ÑEU .
v7 = ZV, 6 cos U ,

6 sink> .

Books

0 I U a- 2T
.

0 E V . c- 9
.

axis _z_a
VLU -
D

V
=L aaosu,bstM⑤

⑥



ex) . Sphere . radius 5 .
Centered at origin .

from top
to neigh 3 .

rcu.n-cs-s-mucosv.s-sinu.sinv.sc
it

0 I ✓ e- 27

y

/cosu=}
a- arc cos ¥ .



Éd .

.
• z=✗4y"o=Z

radius . 5-4--5) ✗=rws0 y=rsw-
height 25 .

2- = Fey? f-

iv.a. vsinu . → * .

..←a¥¥É÷
"

g.

of U EZTI of ✓ I 5 -

radius 5 . ✗=ZÉheight 25
.

Fair)= CV? vcosu, ✓ stun?

oeu±it°⇐V±5z=.a(×Éyradiusheight yn-s-cosu-y-ti.int - r -

Tcu .ir?=2VcosU.VsinU.t--Dsio=z--a.s--⇒a=÷gÉ"ozvvsit ofV15 - radio = V.

v=s ⇒ h = - V3'¥ -25=0 '

z = a. v4 ¥v
"



☐

f-= 1
.



- I
D- ←

☐

☒

*i. ⇐ araaotds
. ¥¥¥



☐
☒

TCU .
D= LXIU .v7. ylu.us#a:uD ÉN

'

town

=
R:| (H , V) ,

a e u c- b. C ' v ed }
.

2- = 9 , y) .



-

y=V.¥?g¢y) : Sla"?

t×=¥§×=l . 0. -2×7 .
t.y-J-y.co, 1.3%7=20.1751 .
-4×-4 :/ ÷É¥f=i, ¥1 -1 : ¥1T -11 : :/ i

0 I Zy = 1--2×352 - ( Zy )J+lÑ
= C- 2-× , -7g

.

I?nÉ" Edb
Utx✗tyH=TÉÉ ffsfcx.yhdsn.sfztcx.y.tl#ytTd-A .





102 -
☐

Surface Area __§ci)ds=µ①dAIsR
.

ÑLUIV) =L / Osinllcosv, cosinusiav, locos?

,

tu-J-u-C.oeioshcosyeocosu.es/vv
O E U C Iz

.

OI ✓ c-2T
co
-sin v2

J
'

Ti
"

io.s.nu/1#i*till--lo3;@tuXtV=Y,ocosueoosviocosllsivnv

☐
☐ * e.

-

losinugfnvlosinucosVOD-HO-if-sinucosv.fi- [ iotsinttostnusinv>J☐•

+µ Cos U COSV 10scopy+ loginustnv c-susTu
= too sInusTnVcoÑ 10051nF sin #doo )I .



5¥#nxtvlldudv . = {
"

{¥1 . $05m u dudu .

• EU ' ¥
.

=
. § du

O EV EZTI
.

= §
"

- loocosu / ¥ du

=¥€z+ioo cos 0] dv
⇒

= ), too dv

=2



-32 ohi↳ =3
. height =3 . } "

t-X-U.su for OEUEZT04<-3
.

29
3

liiuxti / =3 ⇒ . ffyds -_ {So 35mn -③dvdu
Ty tixiiiI☒ dB://fcx.ca.D.ycu.y.zca.is/EgIj/dA . =3"" -

2'T r:3
S R qsinu - V du=L

= 5%22sinudu
=
-27 cosh /É"= -27-(-2-1)=0 .



☐
0

-

-

€%



-

use surface Area -j§④dS=HHF¥zY .

R
.

-

-

2=2×+29+4 ⇒ 2-✗= 2 .
and Zy = 2 .

R : fcx.ly] : o E ✗ ⑤
,
0 E Y £2K )

.

(2-4).
I ZX

sA=SSiE+id9d× ¥¥É
,☐ I *

= [ So 59 dydx

=3 5? y 1% DX
=3 fF2✗d× = 3 . XY? = 3-(22-0)=3-4--12 .



-

-

=

XYY:\ .

Use fffcx.y.ilds-fffcx.y.gl#yDfzF-yE-iidA -• 1
.

④
z=×IyZ⇒. z×=2✗ and Zy=2Y . xD

fsai-iyyds.gs#y7FxF-yF--dAD⇒S IT
,

R
.

¥tY)=4V?

=/fiF-rd.irdo use paint

Riflr.lt?0Er-l.0-O-IH)=%fft'rFr-FrdOdr.u--4i-i1du--8rdr.Vdr--Edu r? 0¥

rila-g-2-fdrTF-rdvD.it/5uy-jutgdu.

"° "= '

$ =2ñF_zlu±_u±)du



f tuk - u±du
32 i 5

=¥ FiuE- § a
±
] /
*

U= I

= ¥ (F)5- ¥ ¥ + }]
.

= ÷ f-sfs-Y.rs
- }Hrs -¥]

= ¥ [¥ -25nF - §
Ért + ¥-7



0



Surface Integral
of Scala

-

=ffFuxtu)dA . usiisltaxtad
.

but we take$3

-
the dot¥tÉÉÉdd throughs

.

product . of⑦
- - F with 'taHv

.



*
ñ

÷
IFñ =ds-t-ii.it/idA.n'ds-.-TuxtidA

.



= ☐

→
A/way compute

the upward flux.
"

positive
0 F€f . 9. h> .

x-axis .

② tuxtv -_ c-Zx ,
- Toy .④ . for suntans

2- = WHY> .

Thus F.Ltuxtv = 4- . g.b>.<→×,-2yd
?

=_fzx-§ty



&
z=wcx.y> .

°

Use fff - nds
.

= ffc-fzx-92-ytttdA.fi
-
cheeked ?

s ☒
horrid

. consistent
two :(Ix , -2-1.1 > =

<2. 5.④ upward-2

co
-2×-59--0

. y=2
- F-✗

7=10-2×-59 ⇒ 2-✗ = -2 and Zyz -5
. 2- :O

'

ftp.n-ids-ffzx#Y+ZdA {g-
2- F-✗

S 5 2-§✗R
= g. ↳ zxtsytttdydx ↳ 2×+59-1 'odbd× z.g.no

5 2=¥g✗
g-
2- F-✗

= f. f. lodydx =/☐ 1012-FX)d× ×, ,

=
20.5 -
ti" -

°

R={ IX.y) . 01×15 .
= 20×-4-1

"

/ É
, no -50=50 ⇐yea

- 5- ×}



•

= ÷
:Use ftp.n-ds-ff-t.tn/-tu)dAf.

Cone : tuxtu = <
vasu

,
vsynu,⑤←P

"'t downward .

for ⇐ N E
2

.

gadius-hei.gl#1tuxtv--L-vcosu.--si.rTfU.V=OU.VSnUVD0¥27 . 0µs U < 2 .

F- =L-X, - Y .

2-
"

7.←→
É . ( tnxtu )

= L-vcosu.WS#sVZD • C-vcosu . -vsinu,
V7

2

I iiosñ + v's
init + v3 = v4 v3 .

§ÉÑdS=,{ v4PDA : IS +v3 dadv. =z-afffii-pdvn-2-altit-EVYI.io%e¥zf





17.7 .



circulation ← surface integral overs
of normal component of
-

the curl off .

net circulation on C
= accumulated rotation

of F over 5
.



-3D- Green 's
Thn-

- Irl

☒ §9×dA .

-

2D curl .

⑦§ty-9×d✗ .



-

Off =L 32+1 > j+cg×-fy)I
'

"X ss
.

Tñ=<o.
bit).É=g×-
§
,?%d±



examplef.IO Verify the Stoke 's -1hm .

F = Cy , - ×, 5k S = upper half of sphere
✗7-92+2-2--1

£ 9 h
'

( = circle ×~+yI1
onxy

-plan
L

Curt - nds
.

↳ cc .

oriented .

Ñ points upward [
outward ]

*

curl = ✗F-fz.gg#.f=co-oiI+eo-7J+E-I-Iy)I---i-oJ+tl-1) I
1 y

-X 5

z=FÉy = Co .
0
,
-2?

ñ
'

=L - Zx, -Ey , 17

= rÉy.it?E-pis---E--.7--.'?d#?jx-ffcurF.n--ds--ffco.o.-z> - <E. % ,

i> DA R

whenR
S

= SSR
-2dA. = -2. IT f{dA= -11115=-11

.



The line integral § FEI
Ñ= circle of radius 1

.

on ✗ y
- plane

-2=0.0
= < cost . Sint ' °> .

i

☐Et £21T

( É=< y . -× . 5?É=csz ,Ét . 5?
I r 't) : <- Sint, cost , 07

.

27

§
,
Fdr = §

,

F. ride = §
"

cs-it-s-5-C-si-ost.de
0

= §
"

-
sink - cost todt .

d

=)?
"
- I dt

= -27.0 Stoke 's Thin V.



exawptez) Evaluate the line tntepd §d=-d
by using the surface integral

in Stoke 's-1hm

with an appropriate choice of S . Assume that
Chase

orientation when view from above
.

F = C- 94 . -7 , ✗ ?

C = circle ✗491=18 . on the plane 2=0

ycu.ir) =
LUCOSV, USTNV , o>.

§ Fdr = ? tvextv = Lo
-
O > V17 .

①s°¥s: ✗4-5=18 on 7=0 .
(Fxpl:c:-c ?

←EÉ
:* . - is

Ji = 20.0 .

I>
,

aunt F-- 0×7 =/ ¥ ÷, :÷|= co -1-D) i-i.tt - o )J+oJ§É-9g - 2- ✗
=
II -1J

'

+ 9É

fffait - nds = {{< 1,-1.9 >.< o_0 .DdA=4 ,-1,9 ?=/ f☐9dA
=9ffdA:9ñffÑ

R = 1621T



② Parametric

rlu.US .

= <Ueosv , usiuv ,
☐ >

¥3
0£ U Eff

J=µxt✓ = 20 . O - U >
.

0 e- VEZT,

cwtt ) = <I , -1,97 .

2T
Tst

✗ CWF -ñds = $21 . -1.9 > co.co.cr
> dud V .

S o 0

LT Fs qududv=/of
= 21T f- tiffs
= 9-i.fr)

"

= 1621T
,



Green's This

d

§ = fdw .





flux of F triple iueaegrd over
across the

the divergence of

T-ovenD.boundaryswfaceotD.tt
.

the cumulative
net flow off

expansion or
across the bonding S . contraction

off over D.



É reen's
Th
"

1-Luxton

☐
Ip . divflux

Tidier



ex 7 Verify Divergence Thin

F-- <3✗ , zy , 32-7
D= { 649.77 ✗45+2-2-41

din Fdv = 3+2+3dv = §§8dv= 8 Sffdv = 8 (volume ofD)D

D D

= 8 ( ¥1T 23 ) = ¥1T

ff F - nds

② Parametric F
:(3129 , ,

z>

TCU -D= < 2 sin ucosv,
25inUS in V, 2cos u> 0£ U < KAT

Ñ = [4sInZucosv, 45in Ñ5nV, 4 sinuous
VD 0

← VE 2T

ISF - nds = ftp.cbsinuc-osv, 4sinus inv, Coco} U>
- 245mincosy 45inwww.4sinu

Cos)
s out

= Jf 24 sin>ucoil -1165in
>usirfv +I45inUcostrd A

R
- -
. wecan integrate this using the trig indenting

. . . and get 2¥



ex] Compute the net outward flux on F=<→, >g. 22-7

across 5 .
Where 5 Is the boundary of ✗ ty +2--3 on

thefirst octend Y
?

§ Finds = 5557 -FdV= -1+3+2dV=4fffdV→g
D D D

= 4Cvolume ✗

what we have is a tri rectangular tetrahedron

and the volume is A÷ and in our case 3¥ =%
so JSS adv = § - 4:18

.

☐

If we want to compute the flux on tie surface boundary

the tretrahedron - compute the flux on 4 surface whereyou
might not want to do .







17.7 .



circulation ← surface integral overs
of normal component of
-

the curl off .

net circulation on C
= accumulated rotation

of F over 5
.



-3D- Green 's
Thn-

- Irl

☒ §9×dA .

-

2D curl .

⑦§ty-9×d✗ .



-

Off =L 32+1 > j+cg×-fy)I
'

"X ss
.

Tñ=<o.
bit).É=g×-
§
,?%d±



examplef.IO Verify the Stoke 's -1hm .

F = Cy , - ×, 5k S = upper half of sphere
✗7-92+2-2--1

£ 9 h
'

( = circle ×~+yI1
onxy

-plan
L

Curt - nds
.

↳ cc .

oriented .

Ñ points upward [
outward ]

*

curl = ✗F-fz.gg#.f=co-oiI+eo-7J+E-I-Iy)I---i-oJ+tl-1) I
1 y

-X 5

z=FÉy = Co .
0
,
-2?

ñ
'

=L - Zx, -Ey , 17

= rÉy.it?E-pis---E--.7--.'?d#?jx-ffcurF.n--ds--ffco.o.-z> - <E. % ,

i> DA R

whenR
S

= SSR
-2dA. = -2. IT f{dA= -11115=-11

.



The line integral § FEI
Ñ= circle of radius 1

.

on ✗ y
- plane

-2=0.0
= < cost . Sint ' °> .

i

☐Et £21T

( É=< y . -× . 5?É=csz ,Ét . 5?
I r 't) : <- Sint, cost , 07

.

27

§
,
Fdr = §

,

F. ride = §
"

cs-it-s-5-C-si-ost.de
0

= §
"

-
sink - cost todt .

d

=)?
"
- I dt

= -27.0 Stoke 's Thin V.



exawptez) Evaluate the line tntepd §d=-d
by using the surface integral

in Stoke 's-1hm

with an appropriate choice of S . Assume that
Chase

orientation when view from above
.

F = C- 94 . -7 , ✗ ?

C = circle ✗491=18 . on the plane 2=0

ycu.ir) =
LUCOSV, USTNV , o>.

§ Fdr = ? tvextv = Lo
-
O > V17 .

①s°¥s: ✗4-5=18 on 7=0 .
(Fxpl:c:-c ?

←EÉ
:* . - is

Ji = 20.0 .

I>
,

aunt F-- 0×7 =/ ¥ ÷, :÷|= co -1-D) i-i.tt - o )J+oJ§É-9g - 2- ✗
=
II -1J

'

+ 9É

fffait - nds = {{< 1,-1.9 >.< o_0 .DdA=4 ,-1,9 ?=/ f☐9dA
=9ffdA:9ñffÑ

R = 1621T



② Parametric

rlu.US .

= <Ueosv , usiuv ,
☐ >

¥3
0£ U Eff

J=µxt✓ = 20 . O - U >
.

0 e- VEZT,

cwtt ) = <I , -1,97 .

2T
Tst

✗ CWF -ñds = $21 . -1.9 > co.co.cr
> dud V .

S o 0

LT Fs qududv=/of
= 21T f- tiffs
= 9-i.fr)

"

= 1621T
,



Green's This

d

§ = fdw .





flux of F triple iueaegrd over
across the

the divergence of

T-ovenD.boundaryswfaceotD.tt
.

the cumulative
net flow off

expansion or
across the bonding S . contraction

off over D.



É reen's
Th
"

1-Luxton

☐
Ip . divflux

Tidier



ex 7 Verify Divergence Thin

F-- <3✗ , zy , 32-7
D= { 649.77 ✗45+2-2-41

din Fdv = 3+2+3dv = §§8dv= 8 Sffdv = 8 (volume ofD)D

D D

= 8 ( ¥1T 23 ) = ¥1T

ff F - nds

② Parametric F
:(3129 , ,

z>

TCU -D= < 2 sin ucosv,
25inUS in V, 2cos u> 0£ U < KAT

Ñ = [4sInZucosv, 45in Ñ5nV, 4 sinuous
VD 0

← VE 2T

ISF - nds = ftp.cbsinuc-osv, 4sinus inv, Coco} U>
- 245mincosy 45inwww.4sinu

Cos)
s out

= Jf 24 sin>ucoil -1165in
>usirfv +I45inUcostrd A

R
- -
. wecan integrate this using the trig indenting

. . . and get 2¥



ex] Compute the net outward flux on F=<→, >g. 22-7

across 5 .
Where 5 Is the boundary of ✗ ty +2--3 on

thefirst octend Y
?

§ Finds = 5557 -FdV= -1+3+2dV=4fffdV→g
D D D

= 4Cvolume ✗

what we have is a tri rectangular tetrahedron

and the volume is A÷ and in our case 3¥ =%
so JSS adv = § - 4:18

.

☐

If we want to compute the flux on tie surface boundary

the tretrahedron - compute the flux on 4 surface whereyou
might not want to do .






