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Definition Vector Fields in Two Dimensions
Let fand g be defined on a region R of R2. Avector field in R is a function F that assigns to each pointin Ra
vector (f(x, y), g(x, y)). The vector field is written as

F(x,y) = (f(x,y), g(x,y)) or
F(x,y) = f(x, vi + g(x, y)j.

Avector field F = (f, g) is continuous or differentiable on a region R of R?2 if fand g are continuous or differentiable
on R, respectively.
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Definition Scalar Line Integral in the Plane
Suppose the scalar-valued function fis defined on a region containing the smooth curve C given by
r(r) = (x(1), y(t)), fora <t < b. The line integral of fover C is

n
(x(1), v()) ds = hi (x(2)), v(t5))Asy,
/_f(\( ), (1)) ds ;E}’Z{ﬂ‘(“ y(t7)Asg
B -

provided this limit exists over all partitions of [a, b]. When the limit exists, fis said to be integrable on C.
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" 2 : 2
Theorem 17.1 Evaluating Scalar Line Integrals in R~
Let fbe continuous on a region containing a smooth curve C : r(f) = (x(1), y(1)), fora <t < b. Then

b
/f ds =/ Fx(@), y()|r'(1)| dt
- a
-
b
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Procedure Evaluating the Line Integral /f ds

C
1. Find a parametric description of C in the form r(1) = (x(1), y(1)), fora <t < b.

2. Compute |r'(1)| = /X' (1) + y'(1)?.

3. Make substitutions for x and y in the integrand and evaluate an ordinary integral:

b
/f ds = / fx(@), y@)|r'(1)| dt.
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Theorem 17.2 Evaluating Scalar Line Integrals in R3
Let fbe continuous on a region containing a smooth curve C : r(1) = (x(1), y(1), z(1)), fora <t < b. Then
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Definition Line Integral of a Vector Field

Let F be a vector field that is continuous on a region containing a smooth oriented curve C parameterized by arc
length. Let T be the unit tangent vector at each point of C consistent with the orientation. The line integral of F over C
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Different Forms of Line Integrals of Vector Fields -
g g osic u'k&&\ :

The line integral f(, F - T ds may be expressed in the following forms, where F = (f, g, h) and C has a
parameterization r(r) = (x(1), y(t), z(t)), fora <t < b} l .
b b R? a€ X\ Y, < In
/ F-r'(t)dt = / (f(Ox'(t) + g()y'(t) + h(1)z'(1)) dt C'D L\’ L
T _ % i 9h> Wit
= /f dx + gdy + hdz 1} ’('e‘)&e - T&S < 9
¢ A YENE=Td e, y (1), BCO W@
O—
- /F - dr. d! ﬁ *

: S aanpute Y (1)

For line integrals in the plane, we let F = (f, g) and assume C is parameterized in the form r(r) = (x(1), y(z)), for
|
), (ompwte F.r'6)

a <t <b. Then
b b
/ F-r'()dt = / (f(Ox' (1) + g(y'(1)) dt = /f dx+gdy = /F - dr.
a a c c —> ‘(t—)
Definition Work Done in a Force Field F ‘ Y
Let F be a continuous force field in a region D of R*. Let a 'E x ] + 9 -U ] + ‘\.?\

C: r(r) = (x(2), y(1), z(1)), fora <t < b,

gﬁ;2;2?:;::1:;:::6%‘?:::1;;?Sn tangent vector T consistent with the orientation. The work done in moving an object GY - fdx < 5&9 .(.Ld‘g_
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Definition Circulation
Let F be a continuous vector field on a region D of R3, and let C be a closed smooth oriented curve in D. The
circulation of Fon Cis f c F - T ds, where T is the unit vector tangent to C consistent with the orientation.

Circulation We assume F = (f, g, h) is a continuous vector field on a region D of R*, and we take C to be a closed
smooth oriented curve in D. The circulation of F along C is a measure of how much of the vector field points in the
direction of C. More simply, as you travel along C in the positive direction, how much of the vector field is at your back
and how much of it is in your face? To determine the circulation, we simply “add up” the components of F in the direction
of the unit tangent vector T at each point. Therefore, circulation integrals are another example of line integrals of vector

fields. ) . .
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Flux of Two-Dimensional Vector Fields Assume F = (f, g) is a continuous vector field on a region R of R2. We let ( AN l.| ke C (rwtﬂﬁa;\ =£o .1-&‘- X ()
Cd

C be a smooth oriented curve in R that does not intersect itself; C may or may not be closed. To compute the flux of the
vector field across C, we “add up” the components of F orthogonal or normal to C at each point of C. Notice that every - CY ss C a F% 't Y
point on C has two unit vectors normal to C. Therefore, we let n denote the unit vector in the xy-plane normal to C in a = \m -f ¢ - 0'\ 0

direction to be defined momentarily. Once the direction of n is defined, the component of F normal to Cis F - n, and the

flux is the line integral of F - n along C, which we denote f(‘ F - nds. Lu‘h Clﬂ & n e.t c ("d wv‘u

The first step is to define the unit normal vector at a point P of C. Because C lies in the xy-plane, the unit vector T
tangent at P also lies in the xy-plane. Therefore, its z-component is 0, and we let T = (7, Ty, 0). As always,

¢ ) | [N 7
k = (0,0, 1) is the unit vector in the z-direction. Because a unit vector n in the xy-plane normal to C is orthogonal to { [ bsth <_|o‘ x > 4_‘6 p —X &‘V e
both T and k, we determine the direction of n by letting n = T X k. This choice has two implications. M-Mj
«If Cis a closed cEJrve oriented coumerclockwise.(when viewed from.above). the unit normal vector points outwgrd o V&':e“ l R
along the curve (Figure 17.26a). When F also points outward at a point on C, the angle O between F and n satisfies l ‘ _eb W” I—t 't
0 < 0 <% (Figure 17.26b). At all such points, F - n > 0 and there is a positive contribution to the flux across C.
When F points inward ata pointon C, = < 0 < & and F - n < 0, which means there is a negative contribution to o.v
i t west
' —h
F * n > 0 gives a positive . o D“QL +° brtk l
contribution to flux K W"c}\ LS D

: AT o e (o0-0.02 insterd o
¢o.0.-\7. W& cheos 440,',)"7
Lt g W +o ke sl 7w tle definition

contribution to flux
(a) (b)

Figure 17.26 ) °+ W
-

« If Cis not a closed curve, the unit normal vector points to the right (when viewed from above) as the curve is
traversed in the positive direction.

Definition Flux ( ; YOO st -‘t)
Let F = (f, g) be a continuous vector field on a region R of R2. Let C : r(r) = (x(t), (1)), fora <t < b, bea -ex)- cgb‘r“‘ —f wx ov‘ C Y 6‘” /lv

F points outward on ¢

n = T X Kk points outward
on curves oriented in the
counterclockwise direction

smooth oriented curve in R that does not intersect itself. The flux of the vector field F across C is

/F nds = / (F@OY () — g(Ox' @) d, <+t < 741; © '(‘,Q\fe‘
Pod a -—

where n = T X K is the unit normal vector and T is the unit tangent vector consistent with the orientation. If C is a F = 6 f-\o 7

closed curve with counterclockwise orientation, n is the outward normal vector, and the flux integral gives the outward 1‘ 4

flux across C. r,
2 A
- - ( o
2 fdy -gaxaf, sitlsind—(<e okt
The concepts of circulation and flux can be visualized in terms of headwinds and crosswinds. Suppose the wind patterns' o

in your neighborhood can be modeled with a vector field F (that doesn't change with time). Now imagine taking a walk -2 T
around the block in a counterclockwise direction along a closed path. At different points along your walk, you encounter ] - t .{

winds from various directions and with various speeds. The circulation of the wind field F along your path is the net - -IS l“\\{ + c DS Mt
amount of headwind (negative contribution) and tailwind (positive contribution) that you encounter during your walk. The - S

flux of F across your path is the net amount of crosswind (positive from your left and negative from your right)

q N
encountered on your walk. f_(: wat‘ -}as;'mls > O -
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Definition Line Integral of a Vector Field ‘ *& —
Let F be a vector field that is continuous on a region containing a Sooth ofented cu C&ramuterized by arc
length. Let T be the unit tangent vector at each point of C consistent with the orientation. The line integral of F over C
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Different Forms of Line Integrals of Vector Fields
The line integral _/(‘ F - T dsmay-be expressed in the following forms, where F = (f, g, h) and C has a
parameterization r(f) = (\'(r).)' 1), z(1)), fora <t < b}

(f(r)x’(r) + g(0)y' (1) + h(H)Z (1)) dt

fdx+gdy+ hdz ) '('0\4'6 s T&S
1), S'Lﬂﬁdib =TddS

‘JF Hf”’ dy “an

For line integrals in the plane, we let F = (f, g) and assume C is parameterized in the form r(r) =

a <t <b. Then
b b
/ F-r'(t)d = / (f()x'(r) + g(r)y' (1)) dt = /f dx+gdy = /F - dr.
a a - (‘

c

(x(2), (1)), for

Definition Work Done in a Force Field
Let F be a continuous force field in a region D of R3. Let

C: r(t) = (x(0), y(1), z(1)), fora <t < b,

be a smooth curve in D with a unit tangent vector T consistent with the orientation. The work done in moving an object
along C in the positive direction is

/r'/iﬂ/ W= /F Tm_/ Fr'()dr.
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Definition Circulation
Let F be a continuous vector field on a region D of R3, and let C be a closed smooth oriented curve in D. The
circulation of Fon Cis f(, F - T ds, where T is the unit vector tangent to C consistent with the orientation.

Circulation We assume F = (f, g, h) is a continuous vector field on a region D of R*, and we take C to be a closed
smooth oriented curve in D. The circulation of F along C is a measure of how much of the vector field points in the
direction of C. More simply, as you travel along C in the positive direction, how much of the vector field is at your back
and how much of it is in your face? To determine the circulation, we simply “add up” the components of F in the direction
of the unit tangent vector T at each point. Therefore, circulation integrals are another example of line integrals of vector
fields.
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Definition Flux ‘F z <)< / %7

Let F = (f. g) be a continuous vector field on a region Rof R2. Let C : r(r) = (x(1), (1)), fora <t < b, bea
smooth oriented curve in R that does not intersect itself. The flux of the vector field F across C is v

s &
/F injds =i / (f(n)y' (1) — g(n)x'(1)) dt, /
a \
, "lS 2 ~

c
where n = T X Kk Jis the unit normal vector and N vector consistent with the orientation. If C is a
closed curvé with counterclockwise orientation, n is the outward normal vector, and the flux integral gives the outward
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Summary

/\

—

2

P>

e Scalar Line Integral:  (Given scalar valued function f and parameterized curve C.)
N\

b
f fds = j £(x(0), y©)IF' (O] dt
C a

Application: Area of the "curtain” between f and C, when f > 0.

2

~~ e Line Integral of a Vector Field:  (Given vector field F and parameterized curve C.)

JF-Tds= fF.r'(t)dt = J\b%‘P-(i',v_'?ol’f. ifF

C a
Application: Work done by the force field F in moving an object along the curve C.

e Circulation: fF-Tds (for closed C) Flux: fF-nds
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173, Consenvostive vertor fields OX) F = Lax, 34>

Definition Conservative Vector Field ‘9) 2 ‘5+ g-
A vector field F is said to be conservative on a region (in R2 or R? )if there exists a scalar function ¢ such that I ('}(’ < X "t\ﬁ

F = V¢ on that region.
WY.") 36)‘ ’fV)?

“
The term conservative refers to conservation of energy. See Exercise 66 for an example of conservation of energy in a Py <27( 3[0 >
/7

conservative force field.

. 1“ g
Theorem 17.3 Test for Conservative Vector Fields 'i. "V'ye‘ f (el‘\

LetF = (f, g, h) be a vector field defined on a connected and simply connected region D of R*, where f, g, and h k&e"{“"ﬂﬂn -!:t l}
have continuous first partial derivatives on D. Then F is a conservative vector field on D (there is a potential function ¢

such that F = V¢ ) if and only if olso c alleck o0

S _% 3 o and L L ‘»_ta‘ﬂ@‘ ‘tu'\c'tzv\.

dy  ox’ 0z ox dz  dy’
). = %

For vector fields in R, we have the single condition :’e =<
)\ x (AS?‘} Tkm ’7- S-V(/

Procedure Finding Potential Functions in R3 P —
Suppose F = (f, g, h) is a conservative vector field. To find ¢ such that F = V¢, use the following steps: ohgd{ I‘j’ F (S
1. Integrate ¢, = f with respect to x to obtain ¢, which includes an arbitrary function c(y, z). ~
A Consewative Vechy

2. Compute ¢, and equate it to g to obtain an expression for ¢ (y, 2).

3. Integrate ¢, (v, z) with respect to y to obtain c(y, z), including an arbitrary function d(z). '(— "d" ‘

4. Compute ¢. and equate it to h to get d(z). ‘{.& - F "M ?Dmd "“

A similar procedure beginning with ¢y, = g or ¢. = h may be easier in some cases.
Mo -9 dme
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Types of Curves and Regions

Definition: Simple and Closed Curves
Suppose a curve C (in R? or R?) is described parametrically by r(t), wherea < t < b.

* Then C is a simple curve if r(t;) # r(t,) forall t; and t,, witha < t; < t, < b; thatis,
C never intersects itself between its endpoints.

» The curve C is closed if r(a) = r(b); that is, the initial and terminal points of C are the
same.

D A~ o0 o

Closed, not simple Not closed, not simple

Closed, simple Not closed, simple

Types of Curves and Regions

Definition: Connected and Simply Connected Regions

« An open region R in R? (or D in R?) is connected if it is possible to connect any two
points in R by a continuous curve lyingin R.  (Think: R is in one piece.)

¢ An open region R is simply connected if every closed simple curve in R can be
deformed and contracted to a pointin R. (Think: R has no holes.)

Recall that all points of an open set are interior points. An open set does not contain any of
its boundary points.

This curve cannot be contracted
1o a point and remain in R.
~R R
& Q JQ ®o
Connecied, Conoctod. an connected, Not connected.
simply connected not simply connected simply connected not simply connected




Theorem 17.4 Fundamental Theorem for Line Integrals
Let Rbe aregionin R> or R? andlet be a differentiable potential function defined on R. If F = V¢ (which n 01‘.,5
means that F is conservative), then A aM B Dﬂ"— MTAJ
F-Tds= [ F-dr=¢B) - ¢@A), 1 &l,a&t U'\'
/ ds / dr = @(B) — ¢(A) o-k —th‘cflm
c c

for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B. H (,U\,WO C

Compare the two versions of the Fundamental Theorem. U iM’?ﬂM/ M
: tor tre
/ F'(x) dx = F(b) — F(a) é"‘ Cah,oﬁ

/Vq) -dr = @(B) — ¢(A) é—' CO'L‘J&
‘ ard onhy v vren
Theorem 17.5

—
. -
| o " T s conseveif,
Let F be a continuous vector field on an open connected region Rin R=. If |/ F - dr is independent of path, then F

c
is conservative; that is, there exists a potential function ¢ suchthatF = V¢ onR.

Thin 175 15 0n anoter waw to deforrie wther or not T is consoneiin
vectn fredek. I¢ memns 4 § Tody is same for @l types of
Cuwrves | -then :-\': (s Congonatint - Bit thts & .t ?ox‘(k\e A~ “est
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Line Integrals on Closed Curves

Notation: We will use f F - dr to denote a line integral over a closed curve C.

c

Theorem: Line Integrals on Closed Curves

Let R be an open connected region in R%or R3. Then‘Fmield onR

if and only if ¢ F - dr = 0 on all simple closed piecewise-smooth oriented curves C in R.

Why? ¢ & TT L.T onlS O‘ﬂ*')

F is a conservative = éF-dr=<p(B)—<p(A)=<P(A)—<P(A)=0 ’ Tis

; oA

- COV\'DGN
F-dr=0 =2 0= | F-dr+ | F-dr
c Cy C;
=>fF dr=—fF-dr= fF-dr g
A IU(
Cy C, -C;

F—ﬂ *49"::05‘5"@;‘5"’”257- . &c-f.&v -0 s -h;z.sgm F«('lu(m,\( .
1 . \ 2 (35) 5 (~23) 4 60),
'Fg:-gs’l*ﬂ = 97?, 2 F:S ConsVvatve, qu -BL—BC% ¢-23) A

50 C.F -4 = QUML) =&
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Theorem 17.5

Let F be a continuous vector field on an open connected region R in R2. If / F - dr is independent of path, then F

c
is conservative; that is, there exists a potential function ¢ suchthatF = Vg onR.

Ti¢ C(onsenotive =  indepondont si path.
%
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Theorem 17.6 Line Integrals on Closed Curves

Let R be an open connected region in R2 or R3. Then F is a conservative vector field on R if and only if
f(. F - dr = 0 on all simple closed piecewise-smooth oriented curves C in R.

—
- v =0
Summary of the Properties of Conservative Vector Fields 5 c

We have established three equivalent properties of conservative vector fields F defined on an open connected region R

" ')
inR2 (orDinR?Y). o conse‘vo_‘t\\/'f_ Uect\’\/

* There exists a potential function ¢ such that F = V¢ (definition).

\ 10?9{8)
. [(. F - dr = @(B) — ¢(A) for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B +|‘M LS A ?

(path independence).

- ur
B f(- F - dr = 0 on all simple piecewise-smooth closed oriented curves Cin R. ‘6\0* W‘l\ Show

The connections between these properties were established by Theorems 17.4, 17.5, and 17.6 in the following way: C h |7 { *'t
6 /)
Theorems 17.4 and 17.5 Theorem 17.6 w

Path independence <  Fis conservative (Vg = F) < F.dr=0.

; mole swe 9°"~';fe‘t
wse. > & 2)



17.4 Ceen’s Theorenm.

Definition Two-Dimensional Curl
dg

The two-dimensional curl of the vector field F = {f, g) is F % If the curl is zero throughout a region, the
vector field is irrotational on that region. :

Theorem 17.7 Green's Theorem—Circulation Form
Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply
connected region R in the plane. Assume ¥ = (f, g).  wnere  and g have continuous first partial derivatives in R.

Then
g 9
?{F-dr j{fdx+gd_v =//<—g—‘—f)dA.
ox oy
J

C R —

circulation circulation a’a—\ CF)

R,

\F
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Theorem 17.8 Area of a Plane Region by Line Integrals
Under the conditions of Green's Theorem, the area of a regiQn R enclosed by a curve Cis
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Definition Two-Dimensional Divergence
of dg

The two-dimensional divergence of the vector field F = (f, g) is x T If the divergence is zero throughout a

region, the vector field is source free on that region. e, = <
9 ——e 9 d W S’x Iy ®
bY -
Theorem 17.9 Green's Theorem—Flux Form U ,?5 oL(v <o
Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply
connected redfon R ifthe plane. Assume F = (f, g), where Famagnavetontinuous first partial derivatives in R.
Then ;: < ' —x") -
l & . _» het divergence.
5 lox S , o . og
= ¢ fdy—gdx = — + — ) dA, -(-l\you. hout
GLY 0SS ox | dy 9
C R *y
b “J,% e et 8 ~ 7
";RD w outward flux outward flux d\VCF) .o -EM T@’e-'bh R
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2.4

Summary:

Given a vector field F = (f, g) and a connected and simply connected region R in R? m
CE—

bounded by a curve C which is simple, closed, piece-wise smooth, and oriented

counterclockwise: N c

* Green's Theorem - Circulation Form:
> CM

dg of
* Two-Dimensional Curl: — ——.
dx dy

Sx
Ox

(If gx — fy = 0 then Fis irrotational.)

* Area by Green's Theorem: The area of R is givep b

1
§Xd}'= Ef(xdy—ydx).
c c

Summary:

Given a vector field F = (f, g) and a connected and simply connected region R in R? m

bounded by a curve C which is simple, closed, piece-wise smooth, and oriented

counterclockwise: c

* Green's Theorem - Flux Form:
C—

of o6\ 29'0“‘/
i;F-nds=ﬂ(é+£)dA.

—
T~ ) 9f 99 i
* Two-Dimensional Divergence: ax + 3y (If fx + gy = 0 then Kis source freg])
—
—

* We also discussed circulation and flux on more general regions.
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Definition Divergence of a Vector Field
The divergence of a vector field F = (f, g, that is differentiable on a region of R* is
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If V- F = 0, the vector field is source free. ° E
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Definition Divergence of a Vector Field

The divergence of a vector field F = (f, g, h) that s differentiable on a region of R* is

g al
v N Domr o i 0

ox ; dz
IfV-F = 0, the vector field is source free.

&) Fr G+ 25 x5 axzy) Tk divlP) .
s stocbe \,JW\/ ’(»QV‘ech&

E S 9;@

v
.9 v

4?1’ - - < -< S -L
_g: 2‘(\04?'\. $> &KQ _a_z’iL ° 29 AN[ZF),Z% 0% X
“ ~ XD.
2:X 2 Gy- - 0.

d
347?'“ :71__?5 @
57 ° sxz, Sowrte free




20 T hecdivergonee < A= wmdich vecs fiell,

, <9 Y YLK Y.27
1:.— — ~ - - _<-f' 9~ 7.
(x19+2) q\ [y\® \‘rl~m
af YA 91«:@'4
o\\v(ﬁ >k Y ks \ dw (€)- \V\“ oty
. - O x 2 (3T 2X
-f: {T» 7 FSK ; “
(%) %) (R B
I il S SR ey o
S g piee R
9 T o - x-ez“—gu’-ﬁ
C)Q:E‘J*%) N (X Gt 25)%

- ~— D X,:('WL 2 ey
EA (iﬂ*i) f_e’)% MM

ﬂ FirJy+he _".\+'Z—3K+X13<2 o + Z{eex et )P T

TYFZFATEX ) 3







-eb FoGY
Definition Curl of a Vector Field Q—O T- j

The curl of a vector field F = (f, g, h) thatis differentiable on a region of R* is { 9 X~ —‘f\D

we Ahe _
et B <t
= L"_”i)i+(1—%)j+("—g—i)k.

\‘ﬁ d A P @J‘ P‘ts. . (()y 0z oz dx dx ady #

If VX F = 0, the vector field is irrotational. LN Y
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Summary: Given F = (f, g, h) a vector field in R3,

) , af dg Oh
 Divergence: dlvF=V-F=a+$+$.
i j Kk
* Curl: curlF=VxF=i i i
dx dy 0z
f g h

* Properties:
o If div F = 0, the vector field is source free.
o If curl F = 0, the vector field is irrotational.
o The curl of a conservative vector field is the zero vector.

o The divergence of the curl is zero.
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Explicit Description z = g(x,y) Parametric Description

Surface Equation Normal vector; magnitude Equation Normal vector; magnitude
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Surface Integrals of Scalar-Valued Functions
Next: We will develop the surface integral of a

scalar-valued function f defined on a smooth
parameterized surface S.

gf(x.y.ZJE

Applications: ':f" .

—-—

e Compute the surface area of S.

e Compute the mass of a thin sheet described by
the surface S with mass density function f.

e Compute the average value of f over the
surface S.

Region of
integration



Surface Integrals of Scalar-Valued Functions
& given

Definition: Let f be ' ion on a smooth surfac
parametrically b where u and v vary over the

rectangle R = {(u,v):a < u < b,c < v < d}. Assume also that the_tangent vectors

. m_(ga_yg ; . Jon_ [ox oy oz
3 _\9u’9u’ ou Sl " loy  \ov'av’av

are continuous on R and the normal vecton( t, X t,/ is nonzero on R.

The surface integral of f over S is

jsf f(xy.2)as = ﬂ f(x(u,v), y(u,v),z(u,v))It, x:tv dA.




Surface Integrals of Scalar-Valued Functions

f Feoy 2 fis) :

f f(x(u, v) }’(u, v) Z(u, v)) ltu X tvl dA
T s du), Y (ww
Interpretation:

e Partition the surface S into subregions Sy
corresponding to rectangles in the uv-plane.

* Add up the values f(xy, Yk, Zi)AS to
approximate the surface integral.

e |t, X t,| is the area of the parallelogram
formed by the tangent vectors.

e The area of Sy = ASy, = |t, X t,| Au Av. S: r(u,v) = (x(u,v), y(u,v), z(u,v))

—

:\U/L/V) , ¢\ £b, CEV eohl
2=, Y-




Surface Integrals of Scalar-Valued Functions

Example: Explicitly Defined Surface z = g(x,y) onR = {(x,¥):a<x < b,c <y < d}

Parametric Description: , r(x,y) =(x,y,9(x,7y))

)(6 (V.
wherea<x<bandc<y<d Yz V. V)
. a.=5tx,9)-‘5““‘ :
Normal
Tangent Vectors: t, = (1,0,z,)and t, = (0,1,2,) :T \ Vector
Normal Vector:

A >
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tyoy T <o >y 224D
2 'j -E_ .
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| J f( :)1)/ st ) gt
loexTyl= | 23yt | -

'2
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Evaluation of Surface Integrals of Scalar-Valued Functions on Explicitly Defined Surfaces

Theorem: Let f be a continuous scalar-valued function on a smooth surface S given
parametrically by z = g(x, y), for (x,y) in a region R. The surface integral of f over § is

Jsff(x,y,z)ds = gf(x'y.g(x,y)) . 2% + 22 + 1 dA.

|t x ty]

If f(x,y,z) = 1, the surface integral equals the area of the surface.



Example: Find the surface area of the hemisphere x? + y% + z% = 100 forsing a

parametric description of the surface. o™

Y (V) =L 10 Sin L £es U, (BSinth 61wy, 10634/ =
= 2

o ¢ he® PRV YL

£,° &, = (o€osWasy, tolssy SW
(0 =St V)

N =\ —_— -
- - '» -~
Explicit Description z = g(x,y) Parametric Description

Surface Equation Normal vector; magnitude Equation Normal xector; magnitude
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Cylinder 2 + 2 = 42, (x,,0):a r= (acosu,asinu,v), (acosu.a sinu.O):B "& & .
0=2zsh O=su=2r0=sv=h
Cone Z2=x*+y (x/z.¥/2,—1); V2 r= (vcosu,vsinu,v), (v cos u,vsinu, —\'):[\/2\‘ &
0<z=<h V=u=s=2r,0=v=h
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Example: Evaluate the g|ven surface integral using a parametric description of the
surface S; the cylinder x? + y? = =9 for0 <z <3.

odis = 2. heiaht =3, g
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Explicit Description z = g(x,y) Parametric Description

Surface Equation Normal vector; magnitude Equation Normal vector: magnitude
q
i- ( A7) —Z_,-.l);‘ ( = Zxs _:_‘-ol> | ’u X tv tu X ’v|
Cylinder 2 + 2 = 42, (v, v,0):a r= (acosu,asinu,v), (acosu,asinu, 0)0
0<z<h O=su=s2r,0=sv=sh
Cone 2=x+% (x/z.¥)2.—1); V2 r= (vcosu,vsinu,v), ‘(\ COS u, v sin u, —v l‘ \/2\"
=z=<h — Su=s=2m0=v=h
h
Sphere 2+ +2=a® (x/z,y/2,1);a/z r = (asinucosv, (a?sin® u cos v]a® sin® u sin v,
asinusinv,acosu), a® sin u cos u) {u' s

O<u=wn0=sv=2w

Paraboloid Y% (2, 2y, —1): V11 + 4(x* + y?) r= (vcosuvsinu,v?), (2v?* cos u, 2v* sinu, —v)

0<z<h O<su=2m0=<v=Vh
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Example: Find the area of part of the plane z = 2x + 2y + 4 over the region R bounded
by the triangle with vertices (0,0), (2,0), and (2, 4) using an explicit description of the
surface.

nse  Surface Prea Sg @S:jfcl)sgxz+?\;+\o|é”
¥ R T S
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Example: Evaluate the given surface integral using an explicit description of the surface S;
the paraboloid z = x? + y2 for0<z<1. —
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Surface Integrals of Vector Fields

Orientable Surfaces: To be orientable, a surface must haye a choice of normal vectors
that varies continuously over the surface. (The surface i)

If a surface encloses a region For other surfaces, we must

(such as a sphere) then we specify the direction of the normal
will choose normal vectors to vector. (E.g. upward orin the
point in the outward direction of the positive z-axis.)

direction.



Surface Integrals of Vector Fields

Flux Integrals: Consider a continuous vector field F = (f, g, h). Let S be a smooth

oriented surface with unit normal vector n. i
| Sar ace 1"“‘7"’4
Definition: The flux integral S¢ alov
j f F-n/dS Sg F O&"‘XTU) dA.  peiy [Tt

)

Bt Wwe tle
computes the net flux of the vector field across the surfa\) Jﬁ

oW o4 vecte tireld ghrongh §
yoke ot T Pidact o‘ﬁ
F - n\= |F||n| cos @ = |F|cos @

' = T wrihdorfy
The flux integral adds up the components
of the vector field F normal to the surface.

Unit normal n




Surface Integrals of Vector Fields
Definition: Surface Integral of a Vector Field

Suppose F = (f, g, h) is a continuous vector field on a region of R? containing a smooth
oriented surface S. If S is defined parametrically as r(u, v) = (x(u,v),y(u,v), z(u, v)),
for (u,v) in aregion R, then

- ) )’
ﬂF- ﬂF (t, X t,) dA. %

-\

h

/
h e Jgr  [0x 6y 0z _Or [0x Oy 0z ” p
where t, =—={=—,=",=— Jand t, = == = {=—, =, > | are continuous on R,

-~

and the normal vector t,, X t,, is nonzero on R, and the direction of the normal vector is

consistent with the onentatlon of:5;
Fa— Important to check! If not

\,Jy.j?, 7?" -{;(,J('fa d.s l—[' MA‘ consistent, change the sign.

1W
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Surface Integrals of Vector Fields

Definition: Surface Integral of a Vector Field
If S is defined in the forn-(z = w(x, y)|for (x,y) in aregion R, then

ﬂF.ndS=ffF.(tuxt,,)dA=f[@—gzy-|ﬂdA.
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Example: Find the ypward flux pof the vector field F = (x,y,@) across the slanted face of
the tetrahedron z = 10 — 2x— 5y in the first octant. You may use either an explicit or a

parametric description of the surface. & =W 92, :
st [f Fonts, = [ For =93 Oy
e, b

ﬁ?. ytstft“tL 3
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Example: Find thmf the vector field F = (—x, —y, z%) across the portion of
B L

the cone z = \/x? + y? between z = 1 and z = 2. You may use either an explicit or a

parametric description of the surface. —;;‘l

pse (g7 s« [] POl YT
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Summary:
e Parameterized Surfaces in R?: r(u,v) = (x(u,v), y(u, v), z(u, v))

* Form of the Normal Vector: t,, X t,, Cylinders, Cones, Spheres, and
Explicitly Defined Surfaces z = g(x,y)

» Surface Integral of a Scalar-Valued Function f(x,y, z)

ﬂ f(x,y,2)dS = U f(x(u,v),y(w,v),z(u,v)) It, X t,| dA
S R If f = 1then the

= ]f f(x y, g(x y)) ng e 23 +1dA integral equals the
R

surface area of S.
» Surface Integral of a Vector Field (Flux) F = (f, g, h)

UF'“dSzUF'(tuXtv)dA Rate of flow of the
S R vector field F through

- ff(—fzx — gz, + h) dA the surface S.
R



Stokes' Theorem



Stokes' Theorem

Theorem: Let S be an oriented surface in R? with a piecewise-smooth closed boundary
C whose orientation is consistent with that of S. Assume F = (f, g, h) is a vector field
whose components have continuous first partial derivatives on S. Then

ivitegral over S
s o .dr = : & Swrine Vi
C tredotlon fl"‘ dr lf(VXF) nds ,,‘- norral Cowror-an‘f o

the awl ot F.

where n is the unit normal vector to S determined by the orientation of S.
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Stokes' Theorem

Stokes' Theorem is the three-dimensipnal version of the circulation form of Green's

Theorem. o
270~ Gveen’s Thw-

§F-dr=f (VX F)-ndS

30 cwl g

Recall that if C is a closed simple piecewise-smooth oriented curve in the xy-plane
enclosing a simply connected region R, and F = (f g) is a differentiable vector field on
R then Green's Theorem says

OAA.
fr dr@ﬂ
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Important Note about Stokes' Theorem

If a closed curve C is the boundary of two different smooth oriented surfaces S; and S,
which both have orientation consisent with that of C, then the integrals of (VX F) - n
on the two sufaces are equal.

]f(VxF)-nd.S‘:!zf(VxF)-ndS

S1

g£F =C 22 * Ll 2 )+ ety

/—__——’

/T"ﬁ = <o6.0, 7.
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(Q<F)- P = Jg.
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« Stokes' Theorem: Given F = (f, g, h) a vector field in R? and S an oriented surface

in R? with closed boundary C whose orientation is consistent with that of S then
under appropriate conditions

fF-dr=ﬂ(VxF)-ndS

é wb: [ aw.

where n is the unit normal vector to S determined by the orientation of S.

» Stokes' Theorem can be used in either direction. That is, it can be used to help
evaluate a line integral or to help evaluate a surface integral.

e If C bounds two surfaces then choose the easier one when evaluating the surface
integral from Stokes' Theorem!



Divergence Theorem



Divergence Theorem

Theorem: Let F be a vector field whose components have continuous first partial derivatives
in a connected and simply connected region D in R3 enclosed by an oriented surface S.
Then
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where n is the outward unit norr{»al vectorto S.
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Divergence Theorem

The Divergence Theorem is the wmﬂmonal version of thd flux form of Green's
Theorem. 30 - Green’s <h ' -(-(.:»Xrl
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Recall that if C is a closed simple piecewise-smooth oriented curve in the xy-plane enclosing
a simply connected region R, and F = (f, g) is a differentiable vector field on R then Green's
Theorem says
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Divergence Theorem for Hollow Regions

Theorem: Suppose the vector field F satisfies the conditions of the Divergence Theorem on
aregion D in R bounded by two oriented surfaces S; and S, where S, lies within S,. Let
S be the entire boundary of D (S = S; U S,) and let nq and n;, be the outward unit normal
vectors for §; and S, respectively. Then

S e (e L

divergence
flux

/ This form of the Divergence Theorem is
5 /u, S, applicable to vector fields that are not

differentiable at the origin, as is the case with
some important radial vector fields of the form:
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Summary

« Divergence Theorem: Given F = (f, g, h) a vector field in R? and D a region in
R3 enclosed by a surface S then under appropriate conditions

lfF-ndS=JJfV-FdV

where n is the outward unit normal vector on S.

* Divergence Theorem for Hollow Regions: Given F = (f, g, h) a vector field in R?
and D a region in R? bounded by two oriented surfaces S;and S, then under

appropriate conditions 1
fﬂv-FdV:ﬂF-ndS=ij-nzdS—]fF-n1dS D / S,
b S SZ Sl ‘ ‘_n' o

where nq and n, are the respective outward unit normal vectors. -,



Stokes' Theorem



Stokes' Theorem

Theorem: Let S be an oriented surface in R? with a piecewise-smooth closed boundary
C whose orientation is consistent with that of S. Assume F = (f, g, h) is a vector field
whose components have continuous first partial derivatives on S. Then
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where n is the unit normal vector to S determined by the orientation of S.
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Stokes' Theorem

Stokes' Theorem is the three-dimensipnal version of the circulation form of Green's

Theorem. o
270~ Gveen’s Thw-

§F-dr=f (VX F)-ndS
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Recall that if C is a closed simple piecewise-smooth oriented curve in the xy-plane
enclosing a simply connected region R, and F = (f g) is a differentiable vector field on
R then Green's Theorem says
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Important Note about Stokes' Theorem

If a closed curve C is the boundary of two different smooth oriented surfaces S; and S,
which both have orientation consisent with that of C, then the integrals of (VX F) - n
on the two sufaces are equal.
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« Stokes' Theorem: Given F = (f, g, h) a vector field in R? and S an oriented surface

in R? with closed boundary C whose orientation is consistent with that of S then
under appropriate conditions

fF-dr=ﬂ(VxF)-ndS

é wb: [ aw.

where n is the unit normal vector to S determined by the orientation of S.

» Stokes' Theorem can be used in either direction. That is, it can be used to help
evaluate a line integral or to help evaluate a surface integral.

e If C bounds two surfaces then choose the easier one when evaluating the surface
integral from Stokes' Theorem!



Divergence Theorem



Divergence Theorem

Theorem: Let F be a vector field whose components have continuous first partial derivatives
in a connected and simply connected region D in R3 enclosed by an oriented surface S.
Then
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where n is the outward unit norr{»al vectorto S.
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Divergence Theorem

The Divergence Theorem is the wmﬂmonal version of thd flux form of Green's
Theorem. 30 - Green’s <h ' -(-(.:»Xrl
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Recall that if C is a closed simple piecewise-smooth oriented curve in the xy-plane enclosing
a simply connected region R, and F = (f, g) is a differentiable vector field on R then Green's
Theorem says
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Divergence Theorem for Hollow Regions

Theorem: Suppose the vector field F satisfies the conditions of the Divergence Theorem on
aregion D in R bounded by two oriented surfaces S; and S, where S, lies within S,. Let
S be the entire boundary of D (S = S; U S,) and let nq and n;, be the outward unit normal
vectors for §; and S, respectively. Then
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/ This form of the Divergence Theorem is
5 /u, S, applicable to vector fields that are not

differentiable at the origin, as is the case with
some important radial vector fields of the form:
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Summary

« Divergence Theorem: Given F = (f, g, h) a vector field in R? and D a region in
R3 enclosed by a surface S then under appropriate conditions

lfF-ndS=JJfV-FdV

where n is the outward unit normal vector on S.

* Divergence Theorem for Hollow Regions: Given F = (f, g, h) a vector field in R?
and D a region in R? bounded by two oriented surfaces S;and S, then under

appropriate conditions 1
fﬂv-FdV:ﬂF-ndS=ij-nzdS—]fF-n1dS D / S,
b S SZ Sl ‘ ‘_n' o

where nq and n, are the respective outward unit normal vectors. -,



